localuf.plot.accuracy¶
Plot failure probability to deduce accuracy thresholds.
Available functions:
monte_carlo
subset_sample
Functions
|
Plot threshold data in |
|
Plot failure probability from output of |
- localuf.plot.accuracy.monte_carlo(data, title='', xlabel=None, ylabel=None, legend=None, alpha=np.float64(0.31731050786291415), method='wilson', base_color=None, capsize=2, **kwargs_for_errorbar)[source]¶
Plot threshold data in
data.- Parameters:
data (DataFrame) – a DataFrame where each column is a (distance, probability); rows m, n indicate number of logical errors and samples, respectively.
title (str) – plot title.
xlabel (None | str) – x-axis label.
ylabel (None | str) – y-axis label.
legend (None | bool) – whether to show legend.
alpha (float) – significance level of confidence intervals.
method (str) – method to compute confidence intervals. For details on confidence intervals, see https://www.statsmodels.org/dev/generated/statsmodels.stats.proportion.proportion_confint.html.
base_color (None | tuple[float, float, float] | str) – a single color for all errorbars and their connecting lines. Increasing distance is then shown by increasing opacity. If
None, each distance is shown by a different, fully opaque color.capsize (float) – length of error bar caps in points.
kwargs_for_errorbar – passed to
pyplot.errorbar.
- Return plotted:
Transposed
datawith additional columnsf, lo, historing respectively the mean, lower and upper confidence bounds of failure probability.- Return containers:
A dictionary where each key is a distance; value, the
ErrorbarContainerfor that distance.
- localuf.plot.accuracy.subset_sample(data, legend=True, alpha=0.3, title='')[source]¶
Plot failure probability from output of
get_failure_data_from_subset_sample.- Parameters:
data (DataFrame) – output of
get_failure_data_from_subset_sample.legend (bool) – whether to show legend.
alpha (float) – transparency of confidence region.
title (str) – plot title.