localuf.plot.runtime¶
Plot runtime data from sim.runtime.
Available functions:
mean
distribution
distributions
violin
Functions
|
|
|
Histogram runtime distributions for each DataFrame in |
|
Plot mean timestep count against code distance. |
|
Violin plot of runtime distributions for a given noise level. |
- localuf.plot.runtime.mean(data, title='', per_measurement_round=False, layers_per_sample=<function <lambda>>, yerr_shows='sem', plot_noise_levels=None, legend=None, grid=False, xlabel=None, ylabel=None, base_color=None, fill_between=True, fill_alpha=0.15, capsize=2, quantile=None, quantile_linestyle='--', **kwargs)[source]¶
Plot mean timestep count against code distance.
- Parameters:
data (DataFrame) – a DataFrame where each column a (distance, probability); row, a runtime sample.
title (str) – plot title.
per_measurement_round (bool) – whether to divide runtime by measurement round count.
layers_per_sample (Callable[[int], int]) – a function with input
dthat outputs the measurement round count per row ofdata. Affects output only ifper_measurement_round.yerr_shows (Literal['sem', 'std']) – what errorbars show: either
'sem'for standard error, or'std'for standard deviation.plot_noise_levels (Sequence[float] | None) – sequence specifying which noise levels to plot, in case want to omit any.
base_color (None | tuple[float, float, float] | str) – a single color for all errorbars and their connecting lines. Decreasing noise level is then shown by increasing opacity. If
None, each noise level is shown by a different, fully opaque color.fill_between (bool) – whether to use
fill_betweeninstead oferrorbar.fill_alpha (float) – alpha value for the filled area.
capsize (float) – length of error bar caps in points.
quantile (None | float) – optional quantile (in the interval [0, 1]) to line plot.
quantile_linestyle (str) – linestyle for the quantile line.
kwargs – passed to either
errorbarorfill_betweendepending on which is used.legend (None | bool)
grid (bool)
xlabel (None | str)
ylabel (None | str)
- Return data_copy:
A copy of
datawith runtimes divided by distance ifper_measurement_roundelse an exact deep copy ofdata.- Return containers:
A dictionary where each key is a noise level; value, the
ErrorbarContainerfor that noise level.
- localuf.plot.runtime.distribution(data, noise_level, bins=80, horizontal=True, figsize=None, log_scale=True, grid=False, global_range=True)[source]¶
- Parameters:
data (DataFrame)
noise_level (float)
figsize (None | tuple[float, float])
- localuf.plot.runtime.distributions(data, noise_level, bins=80, figsize=None, log_scale=True, grid=False, global_range=True, show_xticks=False, subplots_hspace=0.05, quantile=1, supxlabel_y=0.15, **kwargs_for_ylabel)[source]¶
Histogram runtime distributions for each DataFrame in
data.- Parameters:
data (Sequence[DataFrame]) – sequence of DataFrames. In each DataFrame, each column a (distance, probability); row, a runtime sample.
noise_level (float) – noise level associated to the runtimes histogrammed.
bins (int | Iterable[int]) – bin count in each histogram. If an int, use same bin count for all entries in
data. If any bin count is 0, set bin width to 1.global_range – whether to use same bins for all distances within a DataFrame.
quantile (float) – the quantile (in the interval [0, 1]) to draw as a horizontal red line. Default is 1 i.e. the maximum of the sample.
supxlabel_y (float) – y-coordinate for the figure x-label.
kwargs_for_ylabel – passed to
plt.ylabelfor the leftmost subplot in each row.figsize (None | tuple[float, float])
- localuf.plot.runtime.violin(data, noise_level, title='', widths=1, showextrema=False, capsize=3, errorbar_kwargs=None, **kwargs_for_violinplot)[source]¶
Violin plot of runtime distributions for a given noise level.
- Parameters:
capsize (float) – length of error bar caps in points.
data (DataFrame)
noise_level (float)
errorbar_kwargs (None | dict)